• 帮助中心

  • ADADADADAD

    生物技术论文,海洋生物,分子生物学

    生物技术专业论文(最新3篇)[ 毕业论文 ]

    毕业论文 发布时间:2024-05-06 19:01:10 更新时间:

    作者:文/会员上传 下载docx

    简介:

    在学习和工作中,大家总少不了接触论文吧,论文是进行各个学术领域研究和描述学术研究成果的一种说理文章。那么一般论文是怎么写的呢?本文是山草香编辑为大伙儿收集整理的生物技术专业论文(最新3篇),欢迎阅读。

    以下为本文的正文内容,请查阅,本站为公益性网站,复制本文以及下载DOC文档全部免费。

    在学习和工作中,大家总少不了接触论文吧,论文是进行各个学术领域研究和描述学术研究成果的一种说理文章。那么一般论文是怎么写的呢?本文是山草香编辑为大伙儿收集整理的生物技术专业论文(最新3篇),欢迎阅读。

    生物技术论文 篇一

    农业生物技术的主要研究内容包括:增强农作物以及畜禽鱼的抗性、品质改良、提高产量和生产具有特殊用途的物质等。其中以转基因作物的研究和运用最为重要,发展最快。根据统计资料,到2000年,全世界转基因作物推广面积达4420万公顷,比1996年增长了25倍;种植转基因作物的国家从1996年的6个增加到2000年的13个。这其中美国的转基因作物种植面积最广,达到了3030万公顷,占68%;其次为阿根廷,1000万公顷,占23%;加拿大300万公顷,占7%;我国为50万公顷,占1%。

    根据有关专家的看法,现代农业生物技术的最新发展趋势表现为:

    ——研究成果商品化产业化进程加速。目前,农业生物技术作为一项高新技术产业在发达国家业已形成,并处于一个高速发展时期。有关专家预测,本世纪生物技术产品在国际贸易中的份额将达到10%以上,而现代农业生物技术又将占相当的比重。世界银行下属机构预测世界范围内转基因作物产业的交易额为2000年20亿美元,2005年60亿美元,2010年200亿美元;国际农业生物技术应用机构(ISAAA)的预测则分别为30亿美元、80亿美元和280亿美元。

    ——研究方式集约化、规模化明显。在政府以及公共机构对现代农业生物技术进行投资研究的同时,众多私有企业也开始注意到这一领域将是继计算机和网络技术之后的又一个潜力巨大的经济增长点,私人公司已逐步成为农业生物技术的研究主体。以美国为例,民营机构1992年对这一领域的投资为5.95亿美元,而1999年则达到15亿美元。与此同时,世界范围内出现了生物技术企业领域的兼并和收购狂潮,并购金额从1997年的12.37亿美元陡然升至1999年的138亿美元。一些资产过百亿美元的巨型跨国公司由此形成,过去分散的研究基地也随之向集中化规模化发展。

    据业内人士分析,促成公司并购的原因,一方面是为合理利用资源、降低生产成本、优化人员组合,而更重要的原因,则是因为现代农业生物技术产业是一个高技术、高投入、高风险、长周期的产业,小公司在资金、技术、以及抗风险能力上均难以独立对农业生物技术产品进行研发和推广。只有强强联手的大型现代农业生物技术企业才能有效占领市场,与其它企业抗衡。

    生物技术论文 篇二

    近10年来,由于海洋在沿海国家可持续发展中的战略地位日益突出,以及人类对海洋环境特殊性和海洋生物多样性特征的认识不断深入,海洋生物资源多层面的开发利用极大地促进了海洋生物技术研究与应用的迅速发展。1989年首届国际海洋生物技术大会(以下简称MPS大会)在日本召开时仅有几十人参加,而1997年第四届IMBC大会在意大利召开时参加入数达1000多人。现在IMBC会议已成为全球海洋生物技术发展的重要标志,出现了火红的局面。《IMBC2000》在澳大利亚刚刚开过,《IMBC2003》的筹备工作在日本已经开始,以色列为了举办们《IMBC2006》早早作了宣传,并争到了举办权。每3年一届的IMBC不仅吸引了众多高水平的专家学者前往展示与交流研究成果,探讨新的研究发展方向,同时也极大地推动了区域海洋生物技术研究的发展进程。在各大洲,先后成立了区域性学术交流组织,如亚太海洋生物技术学会、欧洲海洋生物技术学会和泛美海洋生物技术协会等。各国还组建了一批研究中心,其中比较著名的为美国马里兰大学海洋生物技术中心、加州大学圣地亚哥分校海洋生物技术和环境中心,康州大学海洋生物技术中心,挪威贝尔根大学海洋分子生物学国际研究中心和日本海洋生物技术研究所等。这些学术组织或研究中心不断举办各种专题研讨会或工作组会议研究讨论富有区域特色的海洋生物技术问题。1998年在欧洲海洋生物技术学会、日本海洋生物技术学会和泛美海洋生物技术协会的支持下,原《海洋生物技术杂志》与《分子海洋生物学和生物技术》合刊为《海洋生物技术》学报(以下简称MBT),现在它已成为一份具有权威性的国际刊物。海洋生物技术作为一个新的学科领域已明确被定义为“海洋生命的分子生物学如细胞生物学及其它的技术应用”。

    为了适应这种快速发展的形势,美国、日本、澳大利亚等发达国家先后制定了国家发展计划,把海洋生物技术研究确定为21世纪优先发展领域。1996年,中国也不失时机地将海洋生物技术纳入国家高技术研究发展计划(863计划),为今后的发展打下了基础。不言而喻,迄今海洋生物技术不仅成为海洋科学与生物技术交叉发展起来的全新研究领域,同时,也是21世纪世界各国科学技术发展的重要内容并将显示出强劲的发展势头和巨大应用潜力。

    1.发展特点

    表1和表2列出的资料大体反映了当前海洋生物技术研究发展的主要特点。

    1.1加强基础生物学研究是促进海洋生物技术研究发展的重要基石

    海洋生物技术涉及到海洋生物的分子生物学、细胞生物学、发育生物学、生殖生物学、遗传学、生物化学、微生物学,乃至生物多样性和海洋生态学等广泛内容,为了使其发展有一个坚实的基础,研究者非常重视相关的基础研究。在《IMBC2000》会议期间,当本文作者询问一位资深的与会者:本次会议的主要进步是什么?他毫不犹豫的回答:分子生物学水平的研究成果增多了。事实确实如此。近期的研究成果统计表明,海洋生物技术的基础研究更侧重于分子水平的研究,如基因表达、分子克隆、基因组学、分子标记、海洋生物分子、物质活性及其化合物等。这些具有导向性的基础研究,对今后的发展将有重要影。

    1.2推动传统产业是海洋生物技术应用的主要方面

    目前,应用海洋生物技术推动海洋产业发展主要聚焦在水产养殖和海洋天然产物开发两个方面,这也是海洋生物技术研究发展势头强劲。充满活力的原因所在。在水产养殖方面,提高重要养殖种类的繁殖、发育、生长和健康状况,特别是在培育品种的优良性状、提高抗病能力方面已取得令人鼓舞的进步,如转生长激素基因鱼的培育、贝类多倍体育苗、鱼类和甲壳类性别控制、疾病检测与防治、DNA疫苗和营养增强等;在海洋天然产物开发方面,利用生物技术的最新原理和方法开发分离海洋生物的活性物质、测定分子组成和结构及生物合成方式、检验生物活性等,已明显地促进了海洋新药、酶、高分子材料、诊断试剂等新一代生物制品和化学品的产业化开发。

    表1近期IMBC大会研讨的主要内容

    表2近期IMBC大会和《MarineBiotechnology》学报论文统计表

    1.3保证海洋环境可持续利用是海洋生物技术研究应用的另一个重要方面

    利用生物技术保护海洋环境、治理污染,使海洋生态系统生物生产过程更加有效是一个相对比较新的应用发展领域,因此,无论是从技术开发,还是产业发展的角度看,它都有巨大的潜力有待挖掘出来。目前已涉及到的研究主要包括生物修复(如生物降解和富集、固定有毒物质技术等)、防生物附着、生态毒理、环境适应和共生等。有关国家把“生物修复”作为海洋生态环境保护及其产业可持续发展的重要生物工程手段,美国和加拿大联合制定了海洋环境生物修复计划,推动该技术的应用与发展。

    1.4与海洋生物技术发展有关的海洋政策始终是公众关注的问题

    其中海洋生物技术的发展策略、海洋生物技术的专利保护、海洋生物技术对水产养殖发展的重要性、转基因种类的安全性及控制问题、海洋生物技术与生物多样性关系以及海洋环境保护等方面的政策、法规的制定与实施倍受关注。

    2.重点发展领域

    当前,国际海洋生物技术的重点研究发展领域主要包括如下几个方面:

    2.1发育与生殖生物学基础

    弄清海洋生物胚胎发育、变态、成熟及繁殖各个环节的生理过程及其分子调控机理,不仅对于阐明海洋生物生长、发育与生殖的分子调控规律具有重要科学意义,而且对于应用生物技术手段,促进某种生物的生长发育及调控其生殖活动,提高水产养殖的质量和产量具有重要应用价值。因此,这方面的研究是近年来海洋生物技术领域的研究重点之一。主要包括:生长激素、生长因子、甲状腺激素受体、促性腺激素、促性腺激素释放激素、生长一催乳激素、渗透压调节激素、生殖抑制因子、卵母细胞最后成熟诱导因子、性别决定因子和性别特异基因等激素和调节因子的基因鉴定、克隆及表达分析,以及鱼类胚胎于细胞培养及定向分化等。

    2.2基因组学与基因转移

    随着全球性基因组计划尤其是人类基因组计划的实施,各种生物的结构基因组和功能基因组研究成为生命科学的重点研究内容,海洋生物的基因组研究,特别是功能基因组学研究自然成为海洋生物学工作者研究的新热点。目前的研究重点是对有代表性的海洋生物(包括鱼、虾、贝及病原微生物和病毒)基因组进行全序列测定,同时进行特定功能基因,如药物基因、酶基因、激素多肽基因、抗病基因和耐盐基因等的克隆和功能分析。在此基础上,基因转移作为海洋生物遗传改良、培育快速生长和抗逆优良品种的有效技术手段,已成为该领域应用技术研究发展的重点。近几年研究重点集中在目标基因筛选,如抗病基因、胰岛素样生长因子基因及绿色荧光蛋白基因等作为目标基因;大批量、高效转基因方法也是基因转移研究的重点方面,除传统的显微注射法、基因枪法和精子携带法外,目前已发展了逆转录病毒介导法,电穿孔法,转座子介导法及胚胎细胞介导法等。

    2.3病原生物学与免疫

    随着海洋环境逐渐恶化和海水养殖的规模化发展,病害问题已成为制约世界海水养殖业发展的瓶颈因子之一。开展病原生物(如细菌、病毒等)致病机理、传播途径及其与宿主之间相互作用的研究,是研制有效防治技术的基础;同时,开展海水养殖生物分子免疫学和免疫遗传学的研究,弄清海水鱼、虾、贝类的免疫机制对于培育抗病养殖品种、有效防治养殖病害的发生具有重要意义。因此,病原生物学与免疫已成为当前海洋生物技术的重点研究领域之一,重点是病原微生物致病相关基因、海洋生物抗病相关基因的筛选、克隆,海洋无脊椎动物细胞系的建立、海洋生物免疫机制的探讨、DNA疫苗研制等。

    2.4生物活性及其产物

    海洋生物活性物质的分离与利用是当今海洋生物技术的又一研究热点。现人研究表明,各种海洋生物中都广泛存在独特的化合物,用来保护自己生存于海洋中。来自不同海洋生物的活性物质在生物医学及疾病防治上显示出巨大的应用潜力,如海绵是分离天然药物的重要资源。另外,有一些海洋微生物具有耐高温或低温、耐高压、耐高盐和财低营养的功能,研究开发利用这些具特殊功能的海洋极端生物可能获得陆地上无法得到的新的天然产物,因而,对极端生物研究也成为近年来海洋生物技术研究的重点方面。这一领域的研究重点包括抗肿瘤药物、工业酶及其它特殊用途酶类、极端微生物中特定功能基因的筛选、抗微生物活性物质、抗生殖药物、免疫增强物质、抗氧化剂及产业化生产等。

    2.5海洋环境生物技术

    该领域的研究重点是海洋生物修复技术的开发与应用。生物修复技术是比生物降解含义更为广泛,又以生物降解为重点的海洋环境生物技术。其方法包括利用活有机体、或其制作产品降解污染物,减少毒性或转化为无毒产品,富集和固定有毒物质(包括重金属等),大尺度的生物修复还包括生态系统中的生态调控等。应用领域包括水产规模化养殖和工厂化养殖、石油污染、重金属污染、城市排污以及海洋其他废物(水)处理等。目前,微生物对环境反应的动力学机制、降解过程的生化机理、生物传感器、海洋微生物之间以及与其它生物之间的共生关系和互利机制,抗附着物质的分离纯化等是该领域的重要研究内容。

    3.前沿领域的最新研究进展

    3.1发育与生殖调控

    应用GIH(性腺抑制激素)和GSH(性腺刺激激素)等激素调控甲壳类动物成熟和繁殖的技术[1],研究了甲状腺激素在金绍生长和发育中的调控作用,发现甲状腺激素受体mRNA水平在大脑中最高,在肌肉中最低,而在肝、肾和鳃中表达水平中等,表明甲状腺素受体在成体金银脑中起着重要作用[1],对海鞘的同源框(Homeobox)基因进行了鉴定,分离到30个同源框基因[1],建立了青鳉的同源框(Homeobox)基因[1],建立了青鳉胚胎干细胞系并通过细胞移植获得了嵌合体青鳉[1],建立了虹鳟原始生殖细胞培养物并分离出Vasa基因[2],进行斑节对虾生殖抑制激素的分离与鉴定[2],应用受体介导法筛选GnRH类似物,用于鱼类繁殖[2],建立了海绵细胞培养技术,用于进行药物筛选[2],建立了将海胆胚胎作为研究基因表达的模式系统[2],通过基因转移开展了海胆胚胎工程的研究[2],研究了人葡糖转移酶和大鼠已糖激酶cDNA在虹鳟胚胎中的表达[3],建立了通过细胞周期蛋白依赖的激酶活性测定海水鱼苗细胞增殖速率的方法[3],研究了几丁质酶基因在斑节对虾蜕皮过程中的表达[4],从海参分离出同源框基因,并进行了序列的测定[4]。

    3.2功能基因克隆

    建立了牙鲆肝脏和脾脏mRNA的表达序列标志,从深海一种耐压细菌中分离到压力调节的操纵子,从大西洋鲑分离到雌激素受体和甲状腺素受体基因,从挪威对虾中分离到性腺抑制激素基因[1];将DNA微阵列技术在海绵细胞培养上进行了应用,构建了班节对虾遗传连锁图谱,建立了海洋红藻EST,从海星卵母细胞中分离出成熟蛋白酶体的催化亚基,初步表明硬骨头鱼类IGF-I原E一肽具有抗肿瘤作用[2];构建了海洋酵母De—baryomyceshansenii的质粒载体,从鲤鱼血清中分离纯化出蛋白酶抑制剂,从兰蟹血细胞中分离到一种抗菌肽样物质,从红鲍分离到一种肌动蛋白启动子,发现依赖于细胞周期的激酶活性可用作海洋鱼类苗种细胞增殖的标记,克隆和定序了鳗鱼细胞色素P4501AcD-NA,通过基因转移方法分析了鳗细胞色素P450IAI基因的启动子区域,分离和克隆了鳗细胞色素P450IAI基因,建立了适宜于沟绍遗传作图的多态性EST标记,构建了黄盖鲽EST数据库并鉴定出了一些新基因,建立了班节对虾一些组织特异的EST标志,从经HirameRhabdovirus病毒感染的牙鲆淋巴细胞EST中分离出596个cDNA克隆[3];用PCR方法克隆出一种自体受精雌雄同体鱼类的ß一肌动蛋白基因,从金鲷cDNA文库中分离出多肽延伸因子EF-2CDNA克隆,在湖鳟基因组中发现了TC1样转座子元件[4];鉴定和克隆出的基因包括:南美白对虾抗菌肽基因、牡蛎变应原(allergen)基因、大西洋鳗和大西洋鲑抗体基因、虹鳟Vasa基因、青鳉P53基因组基因、双鞭毛藻类真核启始因子5A基因、条纹鲈GtH(促性腺激素)受体cDNA、鲍肌动蛋白基因、蓝细菌丙酮酸激酶基因、鲤鱼视紫红质基因调节系列以及牙鲆溶菌酶基因等[1—4]。

    3.3基因转移

    分离克隆了大马哈鱼IGF基因及其启动子,并构建了大马哈鱼IGF(胰岛素样生长因子)基因表达载体[1]。通过核定位信号因子提高了外源基因转移到斑马鱼卵的整合率[1],建立了快速生长的转基因罗非鱼品系并进行了安全性评价;对转基因罗非鱼进行了三倍体诱导,发现三倍体转基因罗非鱼尽管生长不如转基因二倍体快,但优于未转基因的二倍体鱼,同时,转基因三倍体雌鱼是完全不育的,因而具有推广价值[2];研究了超声处理促进外源DNA与金鲷精子结合的技术方法,将GFP作为细胞和生物中转基因表达的指示剂;表明转基因沟鲶比对照组生长快33%,且转基因鱼逃避敌害的能力较差,因而可以释放到自然界中,而不会对生态环境造成大的危害[3];应用GFP作为遗传标记研究了斑马鱼转基因的条件优化和表达效率[3];在抗病基因工程育种方面,构建了海洋生物抗菌肽及溶菌酶基因表达载体并进行了基因转移实验[2];在转基因研究的种类上,目前已从经济养殖鱼类逐步扩展到养殖虾、贝类及某些观赏鱼类[2.3]。通过基因枪法将外源基因转到虹鳟肌肉中获得了稳定表达[4]。

    3.4分子标记技术与遗传多样性

    研究了将鱼类基因内含子作为遗传多样性评价指标的可行性,应用SSCP和定序的方法研究了大西洋和地中海几种海洋生物的遗传多样性[1]。研究了南美白对虾消化酶基因的多态性[1];利用寄生性原生动物和有毒甲藻基因组DNA的间隔区序列作标记检测环境水体中这些病原生物的污染程度,应用18S和5.8S核糖体RNA基因之间的第一个内部间隔区(ITC—1)序列作标记进行甲壳类生物种间和种内遗传多样性研究[2];研究了斑节对虾三个种群的线粒体DNA多态性,用PCR技术鉴定了夏威夷Gobioid苗的种类特异性。通过测定内含子序列揭示了南美白对虾的种内遗传多样性,采用同功酶、微卫星DNA及RAPD标记对褐鳟不同种群的遗传变异进行了评价,在平鱼鉴定并分离出12种微卫星DNA,在美国加州鱿鱼上发现了高度可变的微卫星DNA[3];弄清了一种深水鱼类(Gonostomagracile)线粒体基因组的结构,并发现了硬骨鱼类tRNA基因重组的首个实例,测定了具有重要商业价值的海水轮虫的卫星DNA序列,用RAPD技术在大鲮鲆和鳎鱼筛选到微卫星重复片段,从多毛环节动物上分离出高度多态性的微卫星DNA,用RAPD技术研究了泰国东部泥蟹的遗传多样性[3];用AFLP方法分析了母性遗传物质在雌核发育条纹鲈基因组中的贡献[4]。

    3.5DNA疫苗及疾病防治

    构建了抗鱼类坏死病毒的DNA疫苗[1];开展了虹鳟IHNVDNA疫苗构建及防病的研究,表明用编码IHNV糖蛋白基因的DNA疫苗免疫虹鳟,诱导了非特异性免疫保护反应,证明DNA免疫途径在鱼类上的可行性,从虹鳟细胞系中鉴定出经干扰素可诱导的蛋白激酶[2];建立了养殖对虾病毒病原检测的ELISA试剂盒,用PCR等分子生物学技术鉴定了虾类的病毒性病原,将鱼类的非特异性免疫指标用于海洋环境监控,研究了抗病基因转移提高鲷科鱼类抗病力的可行性,研究了蛤类唾液酸凝集素的抗菌防御反映[2];研究了一种海洋生物多糖及其衍生物的抗病毒活性[3];建立了测定牡蛎病原的PCR—ELISA方法[3];研究了LatrunculinB毒素在红海绵体内的免疫定位[4]。

    3.6生物活性物质

    从海藻中分离出新的抗氧化剂[1],建立了大量生产生物活性化合物的海藻细胞和组织培养技术,建立了通过海绵细胞体外培养制备抗肿瘤化合物的方法[1];从不同生物(如对虾和细菌)中鉴定分离出抗微生物肽及其基因,从鱼类水解产物中分离出可用作微生物生长底物的活性物质,海洋生物中存在的抗附着活性物质,用血管生成抑制剂作为抗受孕剂,从蟹和虾体内提取免疫激活剂,从海洋藻类和蓝细菌中纯化光细菌致死化合物,海星抽提物在小鼠上表现出批精细胞形成的作用,从海洋植物Zosteramarina分离出一种无毒的抗附着活性化合物,从海绵和海鞘抽提物分离出抗肿瘤化合物,开发了珊瑚变态天然诱导剂,从海胆中分离出一种抗氧化的新药,在海洋双鞭毛藻类植物中鉴定出长碳链高度不饱和脂肪酸(C28),表明海洋真菌是分离抗微生物肽等生物活性化合物的理想来源[2];发现海洋假单胞杆菌的硫酸多糖及其衍生物具有抗病毒活性,从硬壳蛤分离出谷光甘肽一S一转移酶,从鲤血清中分离出丝氨酸蛋白酶抑制剂,从海绵中分离出氨激脯氨酸二肽酶,从一种珊瑚分离出具DNA酶样活性的物质,建立了开放式海绵养殖系统,为生物活性物质的大量制备提供了充足的海绵原料[3];从虾肌水解产物中分离到抗氧化肽物质[4];从一?趾Q笙妇蟹掷氪炕鯪一乙酸葡糖胺一6一磷酸脱乙酸酶[4]。

    3.7生物修复、极端微生物及防附着

    研究了转重金属硫蛋白基因藻类对海水环境中重金属的吸附能力,表明明显大于野生藻类[1],研究了石油降解微生物在修复被石油污染的海水环境上的可疗性及应用潜力[1];研究了海洋磁细菌在去除和回收海水环境中重金属上的应用潜力[1];用Bacillus清除养鱼场污水中的氮,用分子技术筛选作为海水养殖饵料的微藻,开发了六价铬在生物修复上的应用潜力,分离出耐冷的癸烷降解细菌,研究了海洋环境中多芳香化烃的微生物降解技术[2];从噬盐细菌分离出渗透压调节基因,并生产了重组Ectoine(渗透压调节因子),从2650米的深海分离到一种耐高温的细菌,这种细菌可用来分离耐高温和热稳定的酶,在耐高温的archaea发现了D型氨基酸和无氧氨酸消旋酶,测定了3种海洋火球菌的基因组DNA序列,借助于CROSS/BLAST分析进行了特定功能基因的筛选,从海底沉积物、海水和北冰洋收集了1000多种噬冷细菌,并从这些细菌中分离到多种冷适应的酶[2];建立了一种测定藤壶附着诱导物质的简单方法,研究了Chlorophyta和共生细菌之间附着所必需的形态上相互作用,研究了珊瑚抗附着物质(dterpene)类似物的抗附着和麻醉作用[3];分析了海岸环境中污着的起始过程,并对沉积物和附着物的影响进行了检测[4]。

    4.展望与建议

    生物技术论文 篇三

    有些学者认为,20世纪的科学技术是以物理学和化学的成就占主导地位,而21世纪的科学技术是以生物学的成就占主导地位。无论这种说法是否得到普遍的认同,生物技术是当今高技术中发展最快的领域似乎是不争的事实。科学家预测,生命科学到2015年会取得革命性进展。这些进展可以帮助人类解决很多目前无法医治的疾病的治疗问题,彻底消除营养不良,改善食品的生产方式,消除各种污染,延长人类寿命,提高生命质量,为社会安全和刑侦提供新的手段。有些成果还可以帮助人类加速植物和动物的人工进化以及改善生态环境对人类的影响等。产生新的有机生命的研究也会取得进展。

    1.生物制药现状

    目前生物制药主要集中在以下几个方向:

    1肿瘤在全世界肿瘤死亡率居首位,美国每年诊断为肿瘤的患者为100万,死于肿瘤者达54.7万。用于肿瘤的治疗费用1020亿美元。肿瘤是多机制的复杂疾病,目前仍用早期诊断、放疗、化疗等综合手段治疗。今后10年抗肿瘤生物药物会急剧增加。如应用基因工程抗体抑制肿瘤,应用导向IL-2受体的融合毒素治疗CTCL肿瘤,应用基因治疗法治疗肿瘤(如应用γ-干扰素基因治疗骨髓瘤)。基质金属蛋白酶抑制剂(TNMPs)可抑制肿瘤血管生长,阻止肿瘤生长与转移。这类抑制剂有可能成为广谱抗肿瘤治疗剂,已有3种化合物进入临床试验。

    2神经退化性疾病老年痴呆症、帕金森氏病、脑中风及脊椎外伤的生物技术药物治疗,胰岛素生长因子rhIGF-1已进入Ⅲ期临床。神经生长因子(NGF)和BDNF(脑源神经营养因子)用于治疗末稍神经炎,肌萎缩硬化症,均已进入Ⅲ期临床。

    美国每年有中风患者60万,死于中风的人数达15万。中风症的有效防治药物不多,尤其是可治疗不可逆脑损伤的药物更少,Cerestal已证明对中风患者的脑力能有明显改善和稳定作用,现已进入Ⅲ期临床。Genentech的溶栓活性酶(Activase重组tPA)用于中风患者治疗,可以消除症状30%。

    3自身免疫性疾病许多炎症由自身免疫缺陷引起,如哮喘、风湿性关节炎、多发性硬化症、红斑狼疮等。风湿性关节炎患者多于4000万,每年医疗费达上千亿美元,一些制药公司正在积极攻克这类疾病。如Genentech公司研究一种人源化单克隆抗体免疫球蛋白E用于治疗哮喘,已进入Ⅱ期临床;Cetor′s公司研制一种TNF-α抗体用于治疗风湿性关节炎,有效率达80%。Chiron公司的β-干扰素用于治疗多发性硬化病。还有的公司在应用基因疗法治疗糖尿病,如将胰岛素基因导入患者的皮肤细胞,再将细胞注入人体,使工程细胞产生全程胰岛素供应。

    4冠心病美国有100万人死于冠心病,每年治疗费用高于1170亿美元。今后10年,防治冠心病的药物将是制药工业的重要增长点。Centocor′sReopro公司应用单克隆抗体治疗冠心病的心绞痛和恢复心脏功能取得成功,这标志着一种新型冠心病治疗药物的延生。

    基因组科学的建立与基因操作技术的日益成熟,使基因治疗与基因测序技术的商业化成为可能,正在达到未来治疗学的新高度。转基因技术用于构造转基因植物和转基因动物,已逐渐进入产业阶段,用转基因绵羊生产蛋白酶抑制剂ATT,用于治疗肺气肿和囊性纤维变性,已进入Ⅱ,Ⅲ期临床。大量的研究成果表明转基因动、植物将成为未来制药工业的另一个重要发展领域。

    2.生物制药展望

    今后10年生物技术将对当代重大疾病治疗剂创造更多的有效药物,并在所有前沿性的医学领域形成新领域。目前热门的药物生物技术如下:

    表1热门药物生物技术

    疫苗62组织纤溶酶原激活剂4

    基因治疗28凝血因子3

    白介素11集落细胞刺激因子3

    干扰素10促红细胞生成素2

    生长因子10SOD1

    重组可溶性受体6其他56

    反义药物6总数284

    生物学的革命不仅依赖于生物科学和生物技术的自身发展,而且依赖于很多相关领域的技术走向,例如微机电系统、材料科学、图像处理、传感器和信息技术等。尽管生物技术的高速发展使人们难以作出准确的预测,但是基因组图谱、克隆技术、遗传修改技术、生物医学工程、疾病疗法和药物开发方面的进展正在加快。

    除了遗传学之外,生物技术还可以继续改进预防和治疗疾病的疗法。这些新疗法可以封锁病原体进入人体并进行传播的能力,使病原体变得更加脆弱并且使人的免疫功能对新的病原体作出反应。这些方法可以克服病原体对抗生素的耐受性越来越强的不良趋势,对感染形成新的攻势。

    除了解决传统的细菌和病毒问题之外,人们正在开发解决化学不平衡和化学成分积累的新疗法。例如,正在开发之中的抗体可以攻击体内的可卡因,将来可以用于治疗成瘾问题。这种方法不仅有助于改善瘾君子的状况,而且对于解决全球性非法毒品贸易问题具有重大影响。

    各种新技术的出现有助于新药物的开发。计算机模拟和分子图像处理技术(例如原子力显微镜、质量分光仪和扫描探测显微镜)相结合可以继续提高设计具有特定功能特性的分子的能力,成为药物研究和药物设计的得力工具。药物与使用该药物的生物系统相互作用的模拟在理解药效和药物安全方面会成为越来越有用的工具。例如,美国食品药物管理局(FDA)在药物审批的过程中利用DennisNoble的虚拟心脏模拟系统了解心脏药物的机理和临床试验观测结果的意义。这种方法到2015年可能会成为心脏等系统临床药物试验的主流方法,而复杂系统(例如大脑)的药物临床试验需要对这些系统的功能和生物学进行更为深入的研究。

    到下世纪初生物技术药物的种类数目尚不会超过一般药物的总数,但生物技术制药公司总数将超过前10年的6倍。目前主要生物技术公司多分布在美国,如Amgen,Geneticsinstitute,Genzyme,Genentech和Chiron,还有Biogen也发展较快。1987年尚没有一种重组DNA药物进入世界药品销售额排名前列表,但到1996年已有多种生物工程药物榜上有名。经上市的生物技术药物主要含3大类,即重组治疗蛋白质、重组疫苗和诊断或治疗用的单克隆抗体。

    药物的研究开发成本目前已经高到难以为继的程度,每种药物投放市场前的平均成本大约为6亿美元。这样高的成本会迫使医药工业对技术的进步进行巨大的投资,以增强医药工业的长期生存能力。综合利用遗传图谱、基于表现型的定制药物开发、化学模拟程序和工程程序以及药物试验模拟等技术已经使药物开发从尝试型方法转变为定制型开发,即根据服药群体对药物反应的深入了解会设计、试验和使用新的药物。这种方法还可以挽救过去在临床试验中被少数患者排斥但有可能被多数患者接受的药物。这种方法可以改善成功率、降低试验成本、为适用范围较窄的药物开辟新的市场、使药物更加适合适用对症群体的需要。如果这种技术趋于成熟,可以对制药工业和健康保险业产生重大影响。

    值得注意的是,制药工业的知识产权保护在世界各地是不平衡的。某些地区(例如亚洲)会继续以生产专利过期药物为主,有些地区(如美国和欧洲)除了继续生产低利润的药物外会不断开发新的药物。

    生物技术专业论文(最新3篇).docx

    将本文的Word文档下载到电脑

    推荐度:

    下载
    热门标签: TAGS1 TAGS2 TAGS3 TAGS4 TAGS5
    ADADAD
    热门栏目